
SIMPLICIAL LOCALIZATIONS AND HOW TO FIND THEM

DORON GROSSMAN-NAPLES

Abstract. Abstractly defining ∞-categorical localization is easy, but explic-

itly constructing it is hard. Following a series of papers by Dwyer and Kan,

I describe the construction known as the hammock localization and use it to
obtain a clearer picture of some important ∞-categories.
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This talk largely follows the work of Dwyer and Kan in [1], [2], and [3].

0. Conventions

Following Lurie, Cat∆ is the category of simplicially enriched categories. An
object of Cat∆ will be called a simplicial category. Note that we have a natural
inclusion Cat∆ ↪−→ sCat by regarding a simplicially enriched category as a sim-
plicial object in 1-categories having a discrete object set. Accordingly, I will write
sO-Cat for the category of simplicial categories with object set O and morphisms
being functors that are the identity on O. Similarly, I will implicitly assume that
all simplicial graphs have discrete vertex set, and write sO-Gr for the category of
simplicial graphs on the set O.

A simplicial model category is a closed module over the monoidal model cate-
gory (sSet,×, QK). That is, it is a simplicial category C tensored and cotensored
over sSet such that we have a natural isomorphism (K × L) ⊗ A ∼= K ⊗ (L ⊗ A)
and an adjunction of three variables Hom(K ⊗ A,B) ∼= Hom(K,Hom(A,B)) ∼=
Hom(A,Hom(K,B)). Moreover, it is equipped with a model structure on C0 sat-
isfying the pushout-product axiom: if f and g are cofibrations in sSet (with the
Quillen-Kan model structure) and C0 respectively, then f ⊗ g is a cofibration in C0,
which is trivial if f or g is. See Chapter II of [4] for more details.
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I will model ∞-categories using simplicial sets with the Joyal model struc-
ture and simplicial categories with the Bergner model structure. A weak equiv-
alence in the Bergner model structure, also called a Dwyer-Kan equivalence, is
a simplicial functor which is essentially surjective and induces a weak homotopy

equivalence on mapping spaces. We have a Quillen equivalence sSet
C−⇀↽−
N

Cat∆

where C sends ∆n to the simplicial category with objects 0, 1, . . . , n such that
Hom(i, j) = (∆1)j−i−1 and composition is given by the inclusion of appropriate
faces (∆1)`−i−1 × (∆1)j−`−1 ∼= (∆1)j−i−2 ↪−→ (∆1)j−i−1. This uniquely determines
the cocontinuous functor C since sSet is a free cocompletion. The right adjoint N
is given, as usual, by N(C)n = Hom(C(∆n), C) with the evident structure maps.
The details can be found in section 1.2 of [5].

I’ll try to be specific, but in general, “category” means 1-category and “∞-
category” means quasicategory. Moreover, a relative category is a 1-category with
a distinguished wide subcategory. If this subcategory satisfies the 2-out-of-3 rule,
then we call the pair a category with weak equivalences.

1. Introduction

The 1-localization of a 1-category C at a class of morphisms W is defined by the
universal property Fun(C[W−1]1,D) ∼= FunW (C,D), the latter denoting the full
subcategory of functors sending W to isomorphisms in D. Symbolically, these are
the functors sending W into the core of D, D'. Computing C[W−1]1 is hard but
doable, at least in principle: the objects are those of C, and morphisms are reduced
words in the elements of Mor(C) ∪W−1.

The localization of an ∞-category C at a class of morphisms W is defined simi-
larly by the universal property Fun(C[W−1],D) ' FunW (C,D).

Proposition 1.1. The localization exists.

Proof. I work in sSet. Without loss of generality, W may be taken to be a subcat-
egory (just take the subcategory generated by its morphisms).

First, assume W = C. Then the universal property becomes Fun(C[W−1],D) '
Fun(C,D'). This property is satisfied by a fibrant replacement for C in the Quillen-
Kan model structure, so it exists.

More generally, for an arbitrary subcategory W , we can form the (homotopy)
pushout

W W [W−1]

C C[W−1]

p

and one easily verifies that a Joyal-fibrant replacement for this satisfies the de-
sired universal property. �

So we know that C[W−1] exists, but this doesn’t give us any way to directly
compute it (other than with the small object argument, which is clearly unfeasible).
In particular, it is far from obvious how to express the ∞-localization of a relative
category (C,W ) in terms of its morphisms. This is a problem, because many of
our favorite ∞-categories are defined to be the localization of model categories.
Examples include Cat∞, Spaces, Ch+(A), and Sp(Top).
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To fix this, we will describe an explicit localization procedure passing through
Cat∆. This procedure will generalize the “reduced word” construction for 1-
localization, replacing words with the more general “hammocks”. As a reward
for our work, we will find very simple descriptions for some of these categories.

2. The Hammock Localization

Let (C,W ) be a relative category. Given a word m in the two letters C and
W−1, we obtain an associated class of prospective pasting diagrams. For example,

a diagram for the word CCW−1 looks like X • • Yw c1 c2 . (Note
that the empty word is permitted.)

We define a morphism between such diagrams to be a commutative diagram
whose vertical maps are in W and whose left- and rightmost maps are the identity,
e.g. the following.

• •

X Y

• •

w2w1

We thus require these diagrams to have the same word and the same leftmost
and rightmost objects.

Definition 2.1. This is the hammock category for (X,Y ) in the word m, denoted
N−1m(C, Y ). A k-simplex of its nerve m(X,Y ) is called a hammock of width k,
length|m|, and type m.

Example 2.2. A hammock of width 3 and type CCW−1. The appearance of these
diagrams gives them their name.

• •

• •

X • • Y

• •

We can put together all of these nerves as X and Y vary to get a simplicial graph
with vertex set Ob(C), which is also called m.

As in the 1-categorical case, we want to reduce our diagrams in order to avoid
redundancy in our localization.

Definition 2.3. A hammock is called reduced if

(i) Its type m has no adjacent repeated letters, and
(ii) No column of horizontal morphisms consists entirely of identity morphisms.

Any hammock can be put into reduced form by removing identity columns and
composing adjacent C columns and W−1 columns. The reduced form can thus
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be viewed as a collection of representatives for equivalence classes of the evident
relation. Now we have the terminology to define our localization.

Definition 2.4. The hammock localization of a relative 1-category (C,W ) is the
simplicial category LHC with the same object set as C, having hom objects LHC(X,Y ) =
(
⋃

words m m(X,Y )) / ∼, where ∼ is the relation described above. Composition is
given by concatenation.

We can view a k-simplex of LHC(X,Y ) as a reduced hammock of width k, in
which case the composition operation becomes concatenation followed by reduction.
This construction gives us a functor LH : RelCat→ Cat∆. In fact, since it leaves
the object set unchanged, it restricts to a functor from RelO-Cat to sO-Cat,
where O is any fixed object set.

We have our construction, but how do we know it is actually a localization in
the sense previously defined? To see this, we use the so-called “standard simplicial
localization” L described by Dwyer and Kan in [1]. The construction is as follows.
Fixing an object set O, we have a free-forgetful adjunction between O-Cat and
O-Gr. The comonad of this adjunction gives us a simplicial bar construction
F∗ : O-Cat→ sO-Cat, which gives us a simplicial resolution of a category by free
categories. Then it is not hard to show that the canonical map ϕ : F∗C → C is
a weak equivalence of simplicial categories. As is often the case with resolutions,
this should be thought of as a cofibrant replacement; in fact, it defines a functorial
cofibrant replacement for (C,W ) in the Bergner model structure on RelCat∆.1

Now we define our localization functor as follows.

Definition 2.5. The standard simplicial localization LC of a relative 1-category
(C,W ) is the dimensionwise localization F∗C[F∗W

−1].

The primary result of [1] is that dimensionwise localization yields a localization
functor on the category of relative simplicial categories which behaves correctly on
cofibrant objects. In particular:

(i) If (V, V ) is a cofibrant relative simplicial category, then LV is an ∞-
groupoid with the correct homotopy type;

(ii) The pushout used to define the localization in general is a homotopy pushout
in the cofibrant case; and

(iii) Localization preserves weak equivalences.

This is enough to show that L, or more accurately its left derived functor, is the
correct localization.

I’ll skip the proof, but suffice to say it mainly involves two useful tricks: reducing
to the free case (this is where cofibrancy is relevant) and using the homotopy-
invariance of the diagonal of a bisimplicial set. Similar arguments, together with a
two-sided Grothendieck construction for simplicial categories (which is applied to
N−1m), yield the following result.

Proposition 2.6. The natural maps LHC ← diagLHF∗C → F∗C[F∗W−1] = LC
are weak equivalences of simplicial categories.

The proof uses an alternate construction of LHC, which can sometimes be useful.
Define Π to be the category whose objects are partitions (S, T ) of sets of the form

1A cofibration in Cat∆ is a retract of the inclusion map into the coproduct with a free simplicial
category; a cofibration in RelCat∆ is just a cofibration between cofibrant categories.
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{1, 2, . . . , n}, where n is any nonnegative integer, and whose morphisms are func-
tions which preserve both the order (weakly) and the partition. We can view this
as a category of words in two letters, where S corresponds to C and T corresponds
to W−1. Accordingly, we have a functor λC : Π → sO-Gr which sends a word m
to the simplicial graph m described above. We have a natural reduction map from
each such graph to the underlying simplicial graph of LHC, and it is shown in [1]
that these assemble into an isomorphism colimλC ∼= LHC.

This proposition, together with what we know about the standard simplicial
localization, tells us that LH is truly a localization in the usual sense.

3. Homotopy Calculi of Fractions

A hammock gives us an explicit representation of a k-cell in a localization, but
it can be very big. If our goal is to find a workable hands-on representation of a
localization, we need some sort of reduction. Fortunately, one is available.

Definition 3.1. A relative category (C,W ) is said to admit a homotopy calculus
of (two-sided) fractions if the natural maps W−1Ci+jW−1 →W−1CiW−1CjW−1

and W−1W i+jW−1 → W−1W iW−1W jW−1 are weak equivalences of simplicial
graphs for all i, j ∈ Z+.

There are analogous concepts of homotopy calculi of left fractions and right
fractions. (The direction refers to the side W−1 is on, so e.g. a homotopy calculus
of left fractions deals with a map out of W−1Ci+j .) As it turns out, these are
stronger than the two-sided calculus described above, but any of them can be used
to give a greatly simplified representation of the hammock localization.

Theorem 3.2. Suppose the relative category (C,W ) admits a homotopy calculus
of fractions. Then the reduction map W−1CW−1 → LHC is a weak equivalence
of simplicial graphs. Analogous results hold for homotopy calculi of left and right
fractions.

Proof. The idea of the proof is to use the characterization of LHC as a colimit to
build it out of word graphs of the form appearing in our homotopy calculi, and
use the provided weak equivalences to reduce down to the smallest possible word.
The details involve representing the relevant operations as composition with certain
endofunctors of Π and verifying that several natural transformations between them
are weak equivalences, which is done using a combination of explicit computation
and the two-sided Grothendieck construction mentioned above. �

There are several situations in which these homotopy calculi can be guaranteed
to exist. For example, if (C,W ) admits a classical calculus of left fractions (a
condition that allows weak equivalences to be “shifted around” and “cancelled” in
a certain one-sided way), then it also admits a homotopy calculus of left fractions
(and dually for right fractions). This is in some sense a trivial case, however,
because the existence of these classical calculi guarantees that the localization is
equivalent to a 1-category. More interesting is the following result:

Proposition 3.3. Let (C,W ) be a category with weak equivalences. Suppose that
any span diagram with one of the legs in W can be naturally completed to a commu-
tative square where each new arrow is in W if the parallel original arrow is. Then
(C,W ) admits a homotopy calculus of left fractions.
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In particular, if (C,W ) is a category with weak equivalences such that W is closed
under pushouts, then it admits a homotopy calculus of left fractions.

There is also a two-sided version of this proposition, and its hypotheses should
seem very familiar.

Proposition 3.4. Let (C,W ) be a category with weak equivalences such that there
are wide subcategories W1 and W2 of W satisfying the following conditions:

(i)

Any span diagram as shown can be nat-
urally completed to a commutative square
with v ∈ W1, and moreover g is in W if
f is;

X X ′

Y Y ′

f

u∈W1

v

g

(ii)

Any cospan diagram as shown can be nat-
urally completed to a commutative square
with u ∈ W2, and moreover f is in W if
g is; and

X ′ X

Y ′ Y

u

gf

v∈W2

(iii) Each morphism w ∈ W admits a functorial factorization w = w2w1 with
w1 ∈W1 and w2 ∈W2.

Then (C,W ) admits a homotopy calculus of fractions.

This hypotheses of this proposition are extraordinarily similar to the properties
of a model category! One need only take W1 and W2 to be acyclic cofibrations
and acyclic fibrations respectively, and assume that the model category in question
has functorial factorization. Thus, we have the following nice reduction for model
categories.

Corollary 3.5. Every Thomason model category admits a homotopy calculus of
fractions.

Just like how the structure of a model category gives us a simple way to repre-
sent morphisms in the 1-localization, the structure of a Thomason model category
gives us a simple way to represent cells of arbitrary dimension in a model for the
∞-localization. This is why we can think of model categories as “presentations”
for∞-categories. In fact, the result holds without the assumption of functorial fac-
torization, but the proof is more difficult. There is one more special case, however,
which includes some of our favorite model categories.

4. Simplicial Model Categories

The following result is incredibly powerful, as it allows us to compute the local-
ization of a simplicial model category directly.

Theorem 4.1. Let M be a simplicial model category. Then LHM0 and M are
naturally equivalent as simplicial categories.

Examples 4.2.

(i) Spaces is defined to be the localization of sSet with the Quillen-Kan model
structure. Since this is obviously a simplicial model category, we find that
the usual self-enrichment of sSet coincides with the∞-categorical simplicial
hom object.
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(ii) Cat∞ is typically defined to be the localization of sSet with the Joyal
model structure, which is most certainly not a simplicial category. How-
ever, it also admits a presentation by the model category of marked sim-
plicial sets sSet+, which is a simplicial category. (In fact, the inclusion
of sSet as simplicial sets with no marked edges induces an equivalence on
localizations.) Since the underlying simplicial enrichment of sSet+ is given
by the core of the simplicial hom, we find that qCat, the simplicial cat-
egory of quasicategories and cores of their mapping spaces, has coherent
nerve (Joyal equivalent to) Cat∞.

(iii) The category of simplicial spectra with the Bousfield-Frielander model
structure is a simplicial model category, from which we can compute the
simplicial hom spaces of Spectra.

(iv) The model category Ch(A) is isomorphic to sAb with the simplicial model
structure induced from enrichment, hence the coherent nerve of sAb is
equivalent to the stable ∞-category of positively graded chain complexes.

The proof of this proposition is via a series of lemmata involving (co)simplicial
resolutions.

Definition 4.3. A simplicial resolution of an object A in a model category is a
Reedy-fibrant simplicial object Y∗ together with a weak equivalence A → Y0. If
the weak equivalence is a cofibration and Y∗ is also Reedy cofibrant, we say this is
a special simplicial resolution. Ordinary and special cosimplicial resolutions X∗ of
an object B are defined dually.

Lemma 4.4. Let M be a model category, and let X and Y be objects of M . Then
X has a special cosimplicial resolution X∗, Y has a special simplicial resolution Y∗,
and for any (possibly non-special) (co)simplicial resolutions of these objects, there
is a natural weak equivalence between diagM(X∗, Y∗) and LHM(X,Y ). Moreover,
if X is cofibrant, they are equivalent to M(X,Y∗), and if Y is fibrant, they are
equivalent to M(X∗, Y ).

Proof. One may assume that the resolutions are special. Moreover, since M admits
a homotopy calculus of fractions, we have a weak equivalence (W c)−1M(W f )−1(X,Y )→
LHM(X,Y ). But this first object and the diagonal can both be expressed as homo-
topy colimits, and their diagrams are related by a functor which can be shown to
be cofinal. The last part follows because we can evaluate the diagonal by taking the
homotopy colimit in the first argument or the homotopy limit in the second. �

This can be used to show the following corollary.

Lemma 4.5. If M is a simplicial model category, then for each k ≥ 0, the iterated
degeneracy map LHM0 → LHMk is a weak equivalence.

This is proven by using (co)simplicial resolutions together with the previous
result to relate the simplicial structure to the hammock localization.

Proof. The theorem now follows by a diagonal argument. To be precise, one uses
the fact that a homotopy colimit over a simplicial diagram in simplicial sets can
have the simplicial factors switched without altering the homotopy colimit, as both
are equal to the diagonal of the associated bisimplicial set. In this case, one can
evaluate the diagonal of LHM either over the simplicial structure of the category
(which is homotopically constant and thus yields LHM0) or over the hammock
localization (which yields M by our first lemma). �
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